Edge-disjoint paths in digraphs with bounded independence number
نویسندگان
چکیده
A digraph H is infused in a digraph G if the vertices of H are mapped to vertices of G (not necessarily distinct), and the edges of H are mapped to edge-disjoint directed paths of G joining the corresponding pairs of vertices of G. The algorithmic problem of determining whether a fixed graph H can be infused in an input graph G is polynomial-time solvable for all graphs H (using paths instead of directed paths). However, the analogous problem in digraphs is NP-complete for most digraphs H. We provide a polynomial-time algorithm to solve a rooted version of the problem, for all digraphs H, in digraphs with independence number bounded by a fixed integer α. The problem that we solve is a generalization of the k edge-disjoint directed paths problem (for fixed k).
منابع مشابه
Arc-Disjoint Paths in Decomposable Digraphs
4 We prove that the weak k-linkage problem is polynomial for every fixed k for totally Φ5 decomposable digraphs, under appropriate hypothesis on Φ. We then apply this and recent results 6 by Fradkin and Seymour (on the weak k-linkage problem for digraphs of bounded independence 7 number or bounded cut-width) to get polynomial algorithms for some class of digraphs like quasi8 transitive digraphs...
متن کاملClique-width: When Hard Does Not Mean Impossible
In recent years, the parameterized complexity approach has lead to the introduction of many new algorithms and frameworks on graphs and digraphs of bounded clique-width and, equivalently, rank-width. However, despite intensive work on the subject, there still exist well-established hard problems where neither a parameterized algorithm nor a theoretical obstacle to its existence are known. Our a...
متن کاملDAG-width and circumference of digraphs
We prove that every digraph of circumference l has DAG-width at most l and this is best possible. As a consequence of our result we deduce that the k-linkage problem is polynomially solvable for every fixed k in the class of digraphs with bounded circumference. This answers a question posed in [2]. We also prove that the weak k-linkage problem (where we ask for arc-disjoint paths) is polynomial...
متن کاملPaths of Bounded Length and Their Cuts: Parameterized Complexity and Algorithms
We study the parameterized complexity of two families of problems: the bounded length disjoint paths problem and the bounded length cut problem. From Menger’s theorem both problems are equivalent (and computationally easy) in the unbounded case for single source, single target paths. However, in the bounded case, they are combinatorially distinct and are both NP-hard, even to approximate. Our r...
متن کاملMonochromatic paths on edge colored digraphs and state splittings
We look at the behavior under state splitting of distinct kinds of properties regarding monochromatic paths on edge colored digraphs. These are absorbance and independence as well as the existence of kernels, semikernels, quasikernels and Grundy functions, all of them defined in terms of monochromatic paths.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 110 شماره
صفحات -
تاریخ انتشار 2015